

DM-003-1164001

Seat No.

M. Sc. (Sem. IV) (CBCS) Examination

March - 2022

Mathematics : CMT-4001 (Linear Algebra)

Faculty Code: 003

Subject Code: 1164001

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1) There are total five questions.

- (2) All questions are mandatory.
- (3) Each question carries equal marks.
- 1 Answer any seven of the following:
 - (1) Define with example: Singular linear transformation.
 - (2) Define with example: Companion matrix.
 - (3) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by $T(x_1, x_2, x_3) = (4x_1, 2x_2, 3x_3)$. Justify whether 4 is a characteristic root of T or not?
 - (4) Define with example: Nilpotent linear transformation.
 - (5) Define Jordan Canonical Form.
 - (6) Define with example: Transpose of a matrix.
 - (7) Define with example: Normal linear transformation.
 - (8) Define with example: Matrix of a bilinear form.
 - (9) Define with example: Non-degenerate bilinear form.
 - (10) Define with example: Unitary Linear Transformation.
- 2 Answer any two of the following:
 - (1) Let V be a finite dimensional vector space over F and $T \in A_F(V)$. Prove that, T is regular if and only if T maps V onto V.

- (2) Let V be an n-dimensional vector space over F. Prove that, $T \in A_F(V)$ is invertible if and only if m(T) is has inverse in F_n .
- (3) Let V be a finite dimensional vector space over F and $T \in A_F(V)$. Let $\lambda_1, \lambda_2, ... \lambda_k$ are the distinct characteristic roots of T in F and $v_1, v_2, ... v_k$ are the characteristic vectors of T beloging to $\lambda_1, \lambda_2, ... \lambda_k$ respectively. Prove that, $v_1, v_2, ... v_k$ are linearly independent over F.

3 Answer the following:

- (1) Let V be a finite dimensional vector space over F and $T \in A_F(V)$. If T is nilpotent, then prove that, $\alpha_0 Id_v + \alpha_1 T + ... + \alpha_m T^m$, where the $\alpha_i \in F$, is invertible if $\alpha_0 \neq 0$.
- (2) Let V be an n-dimensional vector space over F and $T \in A_F(V)$. Suppose $V = V_1 \oplus V_2$, where V_1 and V_2 are T-invariant subspaces of V. Let T_1 and T_2 be the linear transformations induced by T on V_1 and V_2 , respectively. Let $p_1(x)$ and $p_2(x)$ be the minimal polynomials of T_1 and T_2 , respectively. Prove that, the minimal polynomial of T is the least common multiple of $p_1(x)$ and $p_2(x)$.

OR

- (1) Let the matrix $A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \in F_3$. Prove that, A is nilpotent and find the invariants of A.
- (2) Let V be a finite dimensional vector space over F and $T \in A_F(V)$. Let $p(x) = x^r + \gamma_{r-1}x^{r-1} + ... + \gamma_1x + \gamma_0 \in F[x]$ be the minimal polynomial of T over F. If V is cyclic F[x]-module, then prove that, there exists a basis B of V over F such that the matrix of T in B equals C(p(x)).

- Answer the following: 4
 - (1) Let $A = \begin{bmatrix} -1 & -1 & -1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} \in \mathbb{R}_3$. Determine the Jordan form of A.
 - (2)State and prove, Cayley-Hamilton Theorem.
- 5 Answer any two of the following:
 - Let $A, B \in F_n$. Prove that, $\det(AB) = dt(A)\det(B)$. (1)
 - (2)Using Cramer's rule find the solutions, in the real field, of the system of equations gioven below:

$$x+y+z=1$$
$$2x+3y+4z=1$$
$$x-y-z=0.$$

- Let $A \in \mathbb{C}_n$ be a hermitian matrix. Prove that, any (3)characteristic root of A must be real.
- Let V be an n-dimensional inner product space over \mathbb{C} and $T \in A_F(V)$. Prove that,

(a)
$$(S+T)^* = S^* + T^*$$

(b)
$$(\lambda S)^* = \overline{\lambda} S^*$$

(c)
$$(ST)^* = T^*S^*$$
.